What's exported
AbstractPlotting.Absolute
— TypeAbsolute
Force transformation to be absolute, not relative to the current state. This is the default setting.
AbstractPlotting.Accum
— TypeAccum
Force transformation to be relative to the current state, not absolute.
AbstractPlotting.Billboard
— TypeBillboard attribute to always have a primitive face the camera. Can be used for rotation.
AbstractPlotting.Camera
— TypeAbstractPlotting.FRect3D
— TypeAn float valued, three dimensional rectangle.
AbstractPlotting.IRect2D
— TypeAn integer valued, two dimensional rectangle.
AbstractPlotting.IRect3D
— TypeAn integer valued, three dimensional rectangle.
AbstractPlotting.PlotList
— TypePlotlist(plots...)
Experimental feature. Create an object that can encode multiple series.
AbstractPlotting.PlotSpec
— TypePlotSpec{P<:AbstractPlot}(args...; kwargs...)
Object encoding positional arguments (args
), a NamedTuple
of attributes (kwargs
) as well as plot type P
of a basic plot.
AbstractPlotting.Rect3D
— TypeA generic, three dimensional rectangle.
AbstractPlotting.Reverse
— TypeReverses the attribute T upon conversion
AbstractPlotting.Scene
— TypeTODO document this
Fields
parent
events
px_area
camera
camera_controls
data_limits
transformation
plots
theme
attributes
children
current_screens
updated
Constructors
AbstractPlotting.Scene
— MethodScene(scene::Scene; kwargs...)
AbstractPlotting.Stepper
— TypeStepper(scene, path; format = :jpg)
Creates a Stepper for generating progressive plot examples.
Each "step" is saved as a separate file in the folder pointed to by path
, and the format is customizable by format
, which can be any output type your backend supports.
AbstractPlotting.Transformation
— TypeHolds the transformations for Scenes.
Fields
parent::Base.RefValue{AbstractPlotting.Transformable}
translation::Observables.Observable{Vec{3,Float32}}
scale::Observables.Observable{Vec{3,Float32}}
rotation::Observables.Observable{Quaternion{Float32}}
model::Observables.Observable{StaticArrays.SArray{Tuple{4,4},Float32,2,16}}
flip::Observables.Observable{Tuple{Bool,Bool,Bool}}
align::Observables.Observable{Vec{2,Float32}}
data_func::Observables.Observable{Any}
AbstractPlotting.VideoStream
— MethodVideoStream(scene::Scene, framerate = 24)
Returns a stream and a buffer that you can use, which don't allocate for new frames. Use recordframe!(stream)
to add new video frames to the stream, and save(path, stream)
to save the video.
AbstractPlotting.FRect
— MethodFRect(x, y, w, h)
Creates a two dimensional rectangle, at origin (x, y) and with width w and height h. Formally defined as the Cartesian product of the intervals (x, y) and (w, h).
AbstractPlotting.IRect
— MethodIRect(x, y, w, h)
Creates a two dimensional rectangle of integer dimensions, at origin (x, y) and with width w and height h
AbstractPlotting.IRect
— MethodIRect(x, y, wh::VecTypes)
Creates a two dimensional rectangle of integer dimensions, with origin at (x, y), and with width and height as the respective components of vector wh
AbstractPlotting.IRect
— MethodIRect(xy::NamedTuple{(:x, :y)}, wh::NamedTuple{(:width, :height)})
This takes two named tuples and constructs an integer valued rectangle with them.
AbstractPlotting.IRect
— MethodIRect(xy::VecTypes, w, h)
Creates a two dimensional rectangle of integer dimensions, with origin at vector xy, and with width w and height h
AbstractPlotting.IRect
— MethodIRect(xy::VecTypes, wh::VecTypes)
Creates a two dimensional rectangle of integer dimensions, with origin at vector xy, and with width and height as the respective components of vector wh
AbstractPlotting.annotations!
— Method`annotations(strings::Vector{String}, positions::Vector{Point})`
Plots an array of texts at each position in positions
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.annotations!,T} where T
are:
AbstractPlotting.annotations
— Method`annotations(strings::Vector{String}, positions::Vector{Point})`
Plots an array of texts at each position in positions
.
Theme
Available attributes and their defaults for Annotations{...}
are:
align (:left, :bottom)
alpha 1.0
color :black
font "Dejavu Sans"
linewidth 1
overdraw false
position Float32[0.0, 0.0]
rotation 0.0
strokecolor (:black, 0.0)
strokewidth 0
textsize 20
transparency false
visible true
AbstractPlotting.arc!
— Methodarc(origin, radius, start_angle, stop_angle; kwargs...)
This function plots a circular arc, centered at origin
with radius radius
, from start_angle
to stop_angle
. origin
must be a coordinate in 2 dimensions (i.e., a Point2
); the rest of the arguments must be <: Number
.
Examples:
arc(Point2f0(0), 1, 0.0, π)
arc(Point2f0(1, 2), 0.3. π, -π)
Theme
Available attributes and their defaults for Combined{AbstractPlotting.arc!,T} where T
are:
AbstractPlotting.arc
— Methodarc(origin, radius, start_angle, stop_angle; kwargs...)
This function plots a circular arc, centered at origin
with radius radius
, from start_angle
to stop_angle
. origin
must be a coordinate in 2 dimensions (i.e., a Point2
); the rest of the arguments must be <: Number
.
Examples:
arc(Point2f0(0), 1, 0.0, π)
arc(Point2f0(1, 2), 0.3. π, -π)
Theme
Available attributes and their defaults for Arc{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linestyle "nothing"
linewidth 1.0
overdraw false
resolution 361
transparency false
visible true
AbstractPlotting.arrows!
— Method`arrows(points, directions; kwargs...)`
`arrows(x, y, u, v)`
`arrows(x::AbstractVector, y::AbstractVector, u::AbstractMatrix, v::AbstractMatrix)`
`arrows(x, y, z, u, v, w)`
Plots arrows at the specified points with the specified components. u
and v
are interpreted as vector components (u
being the x and v
being the y), and the vectors are plotted with the tails at x
, y
.
If x, y, u, v
are <: AbstractVector
, then each 'row' is plotted as a single vector.
If u, v
are <: AbstractMatrix
, then x
and y
are interpreted as specifications for a grid, and u, v
are plotted as arrows along the grid.
arrows
can also work in three dimensions.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.arrows!,T} where T
are:
AbstractPlotting.arrows
— Method`arrows(points, directions; kwargs...)`
`arrows(x, y, u, v)`
`arrows(x::AbstractVector, y::AbstractVector, u::AbstractMatrix, v::AbstractMatrix)`
`arrows(x, y, z, u, v, w)`
Plots arrows at the specified points with the specified components. u
and v
are interpreted as vector components (u
being the x and v
being the y), and the vectors are plotted with the tails at x
, y
.
If x, y, u, v
are <: AbstractVector
, then each 'row' is plotted as a single vector.
If u, v
are <: AbstractMatrix
, then x
and y
are interpreted as specifications for a grid, and u, v
are plotted as arrows along the grid.
arrows
can also work in three dimensions.
Theme
Available attributes and their defaults for Arrows{...}
are:
arrowcolor :black
arrowhead AbstractPlotting.Automatic()
arrowsize 0.3
arrowtail "nothing"
lengthscale 1.0f0
linecolor :black
linestyle "nothing"
linewidth 1
normalize false
scale Float32[1.0, 1.0, 1.0]
AbstractPlotting.axis2d!
— Methodaxis2d!(args; attributes...)
Plots a 2-dimensional axis.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.axis2d!,T} where T
are:
AbstractPlotting.axis2d
— Methodaxis2d(args; attributes...)
Plots a 2-dimensional axis.
Theme
Axis attributes and their defaults for Axis2D{...}
are:
showgrid: true
padding: 0.1
grid:
linestyle: (nothing, nothing)
linewidth: (0.5, 0.5)
linecolor: ((:black, 0.3), (:black, 0.3))
visible: true
ticks:
linecolor: ((:black, 0.4), (:black, 0.4))
linestyle: (nothing, nothing)
font: ("Dejavu Sans", "Dejavu Sans")
formatter: plain
align: ((:center, :top), (:right, :center))
textsize: (5, 5)
rotation: (0.0, 0.0)
textcolor: (:black, :black)
gap: 3
title_gap: 3
ranges_labels: (AbstractPlotting.Automatic(), AbstractPlotting.Automatic())
linewidth: (1, 1)
frame:
axis_position: nothing
linestyle: nothing
linewidth: 1.0
arrow_size: 2.5
axis_arrow: false
linecolor: black
frames: ((false, false), (false, false))
names:
axisnames: ("x", "y")
rotation: (0.0, -4.71238898038469)
font: ("Dejavu Sans", "Dejavu Sans")
title: nothing
textcolor: (:black, :black)
align: ((:center, :top), (:center, :bottom))
textsize: (6, 6)
showticks: true
AbstractPlotting.axis3d!
— Methodaxis3d!(args; attributes...)
Plots a 3-dimensional Axis.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.axis3d!,T} where T
are:
AbstractPlotting.axis3d
— Methodaxis3d(args; attributes...)
Plots a 3-dimensional Axis.
Theme
Axis attributes and their defaults for Axis3D{...}
are:
showaxis: (true, true, true)
showgrid: (true, true, true)
padding: 0.1
visible: true
ticks:
rotation: (-0.7071067811865475 + -0.0im + -0.0jm - 0.7071067811865476km, -4.371139e-8 + 0.0im + 0.0jm + 1.0km, -3.090861907263062e-8 + 3.090861907263061e-8im + 0.7071067811865475jm + 0.7071067811865476km)
font: ("Dejavu Sans", "Dejavu Sans", "Dejavu Sans")
ranges_labels: (AbstractPlotting.Automatic(), AbstractPlotting.Automatic())
formatter: plain
textcolor: (RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.6f0), RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.6f0), RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.6f0))
align: ((:left, :center), (:right, :center), (:right, :center))
textsize: (5, 5, 5)
gap: 1
frame:
axiscolor: (:black, :black, :black)
linewidth: (1, 1, 1)
linecolor: (RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.4f0), RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.4f0), RGBA{Float32}(0.5f0,0.5f0,0.5f0,0.4f0))
names:
axisnames: ("x", "y", "z")
rotation: (-0.7071067811865475 + -0.0im + -0.0jm - 0.7071067811865476km, -4.371139e-8 + 0.0im + 0.0jm + 1.0km, -3.090861907263062e-8 + 3.090861907263061e-8im + 0.7071067811865475jm + 0.7071067811865476km)
font: ("Dejavu Sans", "Dejavu Sans", "Dejavu Sans")
textcolor: (:black, :black, :black)
align: ((:left, :center), (:right, :center), (:right, :center))
textsize: (6.0, 6.0, 6.0)
gap: 1
showticks: (true, true, true)
scale: Float32[1.0, 1.0, 1.0]
AbstractPlotting.band!
— Methodband(x, ylower, yupper; kwargs...)
Plots a band from ylower
to yupper
along x
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.band!,T} where T
are:
AbstractPlotting.band
— Methodband(x, ylower, yupper; kwargs...)
Plots a band from ylower
to yupper
along x
.
Theme
Available attributes and their defaults for Band{...}
are:
alpha 1.0
color RGBA{Float32}(1.0f0,0.0f0,0.0f0,0.2f0)
colormap :viridis
colorrange AbstractPlotting.Automatic()
interpolate false
linewidth 1
overdraw false
shading true
transparency false
visible true
AbstractPlotting.barplot!
— Methodbarplot(x, y; kwargs...)
Plots a barplot; y
defines the height. x
and y
should be 1 dimensional.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.barplot!,T} where T
are:
AbstractPlotting.barplot
— Methodbarplot(x, y; kwargs...)
Plots a barplot; y
defines the height. x
and y
should be 1 dimensional.
Theme
Available attributes and their defaults for BarPlot{...}
are:
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
fillto 0.0
marker GeometryTypes.HyperRectangle
strokecolor :white
strokewidth 0
width AbstractPlotting.Automatic()
AbstractPlotting.broadcast_foreach
— MethodLike broadcast but for foreach. Doesn't care about shape and treats Tuples && StaticVectors as scalars.
AbstractPlotting.button!
— Methodbutton(text)
Creates a button which can be clicked. On click, the button increments its clicks
field by one.
For example:
scene = button("click me please")
lift(scene[end].clicks) do clicks
# your function here
end
Theme
Available attributes and their defaults for Combined{AbstractPlotting.button!,T} where T
are:
AbstractPlotting.button
— Methodbutton(text)
Creates a button which can be clicked. On click, the button increments its clicks
field by one.
For example:
scene = button("click me please")
lift(scene[end].clicks) do clicks
# your function here
end
Theme
Available attributes and their defaults for Button{...}
are:
backgroundcolor (:white, 0.4)
camera AbstractPlotting.campixel!
clicks 0
dimensions (40, 40)
padvalue 0.15
position (10, 10)
raw true
strokecolor (:black, 0.4)
strokewidth 1
textcolor :black
textsize 20
AbstractPlotting.cam2d!
— Methodcam2d!(scene::SceneLike, kwargs...)
Creates a 2D camera for the given Scene.
AbstractPlotting.cam2d
— MethodCreates a subscene with a pixel camera
AbstractPlotting.cam3d_cad!
— Methodcam3d_cad!(scene; kw_args...)
Creates a 3D camera for scene
which rotates around the viewer's "up" axis - similarly to how it's done in CAD software cameras.
AbstractPlotting.campixel!
— Methodcampixel!(scene)
Creates a pixel-level camera for the Scene
. No controls!
AbstractPlotting.colorlegend!
— Methodcolorlegend(colormap, range)
colorlegend(plot::Plot)
Creates a colorbar from the given colormap or range, or from the Attributes of the given Plot.
Theme
Available attributes and their defaults for ColorLegend{...} are:
align (:left, :hcenter) backgroundcolor :white camera AbstractPlotting.campixel! font "Dejavu Sans" formatter AbstractPlotting.Formatters.plain labels AbstractPlotting.Automatic() outerpadding 10 padding 10 position (1, 1) ranges AbstractPlotting.Automatic() raw true rotation 0.0 strokecolor RGBA{Float64}(0.3,0.3,0.3,0.9) strokewidth 0.3 textcolor :black textgap 15 textsize 16 width (20, <the height of the scene> - 10)
AbstractPlotting.colorlegend
— Methodcolorlegend(colormap, range)
colorlegend(plot::Plot)
Creates a colorbar from the given colormap or range, or from the Attributes of the given Plot.
Theme
Available attributes and their defaults for ColorLegend{...} are:
align (:left, :hcenter) backgroundcolor :white camera AbstractPlotting.campixel! font "Dejavu Sans" formatter AbstractPlotting.Formatters.plain labels AbstractPlotting.Automatic() outerpadding 10 padding 10 position (1, 1) ranges AbstractPlotting.Automatic() raw true rotation 0.0 strokecolor RGBA{Float64}(0.3,0.3,0.3,0.9) strokewidth 0.3 textcolor :black textgap 15 textsize 16 width (20, <the height of the scene> - 10)
AbstractPlotting.contour!
— Methodcontour(x, y, z)
Creates a contour plot of the plane spanning x::Vector, y::Vector, z::Matrix
Theme
Available attributes and their defaults for Combined{AbstractPlotting.contour!,T} where T
are:
AbstractPlotting.contour
— Methodcontour(x, y, z)
Creates a contour plot of the plane spanning x::Vector, y::Vector, z::Matrix
Theme
Available attributes and their defaults for Contour{...}
are:
alpha 1.0
color "nothing"
colormap :viridis
colorrange AbstractPlotting.Automatic()
fillrange false
levels 5
linewidth 1.0
overdraw false
transparency false
visible true
AbstractPlotting.contour3d!
— Methodcontour3d(x, y, z)
Creates a 3D contour plot of the plane spanning x::Vector, y::Vector, z::Matrix, with z-elevation for each level.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.contour3d!,T} where T
are:
AbstractPlotting.contour3d
— Methodcontour3d(x, y, z)
Creates a 3D contour plot of the plane spanning x::Vector, y::Vector, z::Matrix, with z-elevation for each level.
Theme
Available attributes and their defaults for Contour3d{...}
are:
alpha 1.0
color "nothing"
colormap :viridis
colorrange AbstractPlotting.Automatic()
fillrange false
levels 5
linewidth 1.0
overdraw false
transparency false
visible true
AbstractPlotting.convert_arguments
— MethodEnables to use scatter like a surface plot with x::Vector, y::Vector, z::Matrix spanning z over the grid spanned by x y
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y, z)::(Vector)
Takes vectors x
, y
, and z
and turns it into a vector of 3D points of the values from x
, y
, and z
. P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y)::(Vector)
Takes vectors x
and y
and turns it into a vector of 2D points of the values from x
and y
.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, y)::Vector
Takes vector y
and generates a range from 1 to the length of y
, for plotting on an arbitrary x
axis.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x)::(Vector)
Takes an input GeometryPrimitive x
and decomposes it to points. P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x)::(Vector)
Takes an input HyperRectangle
x
and decomposes it to points.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, Matrix)::Tuple{ClosedInterval, ClosedInterval, Matrix}
Takes an AbstractMatrix
, converts the dimesions n
and m
into ClosedInterval
, and stores the ClosedInterval
to n
and m
, plus the original matrix in a Tuple.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y, z)::Tuple{ClosedInterval, ClosedInterval, Matrix}
Takes 2 ClosedIntervals's x
, y
, and an AbstractMatrix z
, and converts the closed range to linspaces with size(z, 1/2) P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x::VecOrMat, y::VecOrMat, z::Matrix)
Takes 3 AbstractMatrix
x
, y
, and z
, converts them to Float32
and outputs them in a Tuple.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y, z, f)::(Vector, Vector, Vector, Matrix)
Takes AbstractVector
x
, y
, and z
and the function f
, evaluates f
on the volume spanned by x
, y
and z
, and puts x
, y
, z
and f(x,y,z)
in a Tuple.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(Mesh, vertices, indices)::GLNormalMesh
Takes vertices
and indices
, and creates a triangle mesh out of those. See to_vertices and to_triangles for more informations about accepted types.
AbstractPlotting.convert_arguments
— Methodconvert_arguments(Mesh, x, y, z, indices)::GLNormalMesh
Takes real vectors x, y, z and constructs a triangle mesh out of those, using the faces in indices
, which can be integers (every 3 -> one triangle), or GeometryTypes.Face{N, <: Integer}.
AbstractPlotting.convert_arguments
— Methodconvert_arguments(Mesh, x, y, z)::GLNormalMesh
Takes real vectors x, y, z and constructs a mesh out of those, under the assumption that every 3 points form a triangle.
AbstractPlotting.convert_arguments
— Methodconvert_arguments(Mesh, xyz::AbstractVector)::GLNormalMesh
Takes an input mesh and a vector xyz
representing the vertices of the mesh, and creates indices under the assumption, that each triplet in xyz
forms a triangle.
AbstractPlotting.convert_arguments
— Methodconvert_arguments(x)::(String)
Takes an input AbstractString
x
and converts it to a string.
AbstractPlotting.convert_arguments
— MethodAccepts a Vector of Pair of Points (e.g. [Point(0, 0) => Point(1, 1), ...]
) to encode e.g. linesegments or directions.
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y, f)::(Vector, Vector, Matrix)
Takes vectors x
and y
and the function f
, and applies f
on the grid that x
and y
span. This is equivalent to f.(x, y')
. P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, x, y, z, i)::(Vector, Vector, Vector, Matrix)
Takes 3 AbstractVector
x
, y
, and z
and the AbstractMatrix
i
, and puts everything in a Tuple.
P
is the plot Type (it is optional).
AbstractPlotting.convert_arguments
— Methodconvert_arguments(P, Matrix)::Tuple{ClosedInterval, ClosedInterval, ClosedInterval, Matrix}
Takes an array of {T, 3} where T
, converts the dimesions n
, m
and k
into ClosedInterval
, and stores the ClosedInterval
to n
, m
and k
, plus the original array in a Tuple.
P
is the plot Type (it is optional).
AbstractPlotting.convert_attribute
— FunctionA Symbol/String naming the gradient. For more on what names are available please see: available_gradients()
. For now, we support gradients from PlotUtils
natively.
AbstractPlotting.convert_attribute
— Methodto_colormap(b, x)
An AbstractVector{T}
with any object that to_color
accepts.
AbstractPlotting.convert_attribute
— Method`AbstractVector{<:AbstractFloat}` for denoting sequences of fill/nofill. e.g.
[0.5, 0.8, 1.2] will result in 0.5 filled, 0.3 unfilled, 0.4 filled. 1.0 unit is one linewidth!
AbstractPlotting.convert_attribute
— Methodto_volume_algorithm(b, x)
Enum values: IsoValue
Absorption
MaximumIntensityProjection
AbsorptionRGBA
IndexedAbsorptionRGBA
AbstractPlotting.convert_attribute
— Methodrotation accepts:
to_rotation(b, quaternion)
to_rotation(b, tuple_float)
to_rotation(b, vec4)
AbstractPlotting.convert_attribute
— MethodA `Symbol` equal to `:dash`, `:dot`, `:dashdot`, `:dashdotdot`
AbstractPlotting.convert_attribute
— MethodText align, e.g.:
AbstractPlotting.convert_attribute
— MethodSymbol/String: iso, absorption, mip, absorptionrgba, indexedabsorption
AbstractPlotting.convert_attribute
— Methodfont conversion
a string naming a font, e.g. helvetica
AbstractPlotting.convert_attribute
— MethodTuple(A, B) or Pair{A, B} with any object that to_color
accepts
AbstractPlotting.fill_between!
— Methodfill_between!(x, y1, y2; where = nothing, scene = current_scene(), kw_args...)
fill the section between 2 lines with the condition where
AbstractPlotting.force_update!
— MethodForces the scene to be re-rendered
AbstractPlotting.hbox
— Methodhbox(scenes...; parent = Scene(clear = false), kwargs...)
Attach the given Scenes together on the horizontal axis. For example, two Scenes hbox
ed will be placed one on top of the other.
– Scene 1 –
– Scene 2 –
AbstractPlotting.heatmap!
— Methodheatmap(x, y, values)
heatmap(values)
Plots a heatmap as an image on x, y
(defaults to interpretation as dimensions).
Theme
Available attributes and their defaults for Combined{AbstractPlotting.heatmap!,T} where T
are:
AbstractPlotting.heatmap
— Methodheatmap(x, y, values)
heatmap(values)
Plots a heatmap as an image on x, y
(defaults to interpretation as dimensions).
Theme
Available attributes and their defaults for Heatmap{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
interpolate false
levels 1
linewidth 0.0
overdraw false
transparency false
visible true
AbstractPlotting.help
— Methodhelp(func[; extended = false])
Welcome to the main help function of Makie.jl
/ AbstractPlotting.jl
.
For help on a specific function's arguments, type help_arguments(function_name)
.
For help on a specific function's attributes, type help_attributes(plot_Type)
.
Use the optional extended = true
keyword argument to see more details.
AbstractPlotting.help_arguments
— Methodhelp_arguments([io], func)
Returns a list of signatures for function func
.
AbstractPlotting.help_attributes
— Methodhelp_attributes([io], Union{PlotType, PlotFunction}; extended = false)
Returns a list of attributes for the plot type Typ
. The attributes returned extend those attributes found in the default_theme
.
Use the optional keyword argument extended
(default = false
) to show in addition the default values of each attribute. usage:
>help_attributes(scatter)
alpha
color
colormap
colorrange
distancefield
glowcolor
glowwidth
linewidth
marker
marker_offset
markersize
overdraw
rotations
strokecolor
strokewidth
transform_marker
transparency
uv_offset_width
visible
AbstractPlotting.hovered_scene
— Methodhovered_scene()
Return the scene
that the mouse is currently hovering over.
Properly identifies the scene for a plot with multiple sub-plots.
AbstractPlotting.image!
— Methodimage(x, y, image)
image(image)
Plots an image on range x, y
(defaults to dimensions).
Theme
Available attributes and their defaults for Combined{AbstractPlotting.image!,T} where T
are:
AbstractPlotting.image
— Methodimage(x, y, image)
image(image)
Plots an image on range x, y
(defaults to dimensions).
Theme
Available attributes and their defaults for Image{...}
are:
alpha 1.0
color :black
colormap ColorTypes.RGBA{Float32}[RGBA{Float32}(0.0f0,0.0f0,0.0f0,1.0f0), RGBA{Float32}(1.0f0,1.0f0,1.0f0,1.0f0)]
colorrange AbstractPlotting.Automatic()
linewidth 1
overdraw false
transparency false
visible true
AbstractPlotting.ispressed
— Methodreturns true if button
is pressed in scene[:mousebuttons or :keyboardbuttons] You can use nothing, to indicate it should always return true
AbstractPlotting.legend!
— Method`legend(plots, labels; kwargs...)`
Plots a legend for the given plots with the given labels. plots
may be a single Plot or a list of Plots.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.legend!,T} where T
are:
AbstractPlotting.legend
— Method`legend(plots, labels; kwargs...)`
Plots a legend for the given plots with the given labels. plots
may be a single Plot or a list of Plots.
Theme
Available attributes and their defaults for Legend{...}
are:
align (:left, :center)
backgroundcolor :white
camera AbstractPlotting.campixel!
font "Dejavu Sans"
gap 20
labelwidth 20
linepattern Point{2,Float32}[[0.0, 0.0], [1.0, 0.0]]
markersize 5
outer_area GeometryTypes.HyperRectangle{2,Int64}([0, 0], [1, 1])
outerpadding 10
padding 10
position (1, 1)
raw true
rotation 1.0 + 0.0im + 0.0jm + 0.0km
scatterpattern Point{2,Float32}[[0.5, 0.0]]
strokecolor RGBA{Float64}(0.3,0.3,0.3,0.9)
strokewidth 1
textcolor :black
textgap 15
textsize 16
AbstractPlotting.lines!
— Methodlines(positions)
lines(x, y)
lines(x, y, z)
Creates a connected line plot for each element in (x, y, z)
, (x, y)
or positions
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.lines!,T} where T
are:
AbstractPlotting.lines
— Methodlines(positions)
lines(x, y)
lines(x, y, z)
Creates a connected line plot for each element in (x, y, z)
, (x, y)
or positions
.
Theme
Available attributes and their defaults for Lines{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linestyle "nothing"
linewidth 1.0
overdraw false
transparency false
visible true
AbstractPlotting.linesegments!
— Methodlinesegments(positions)
linesegments(x, y)
linesegments(x, y, z)
Plots a line for each pair of points in (x, y, z)
, (x, y)
, or positions
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.linesegments!,T} where T
are:
AbstractPlotting.linesegments
— Methodlinesegments(positions)
linesegments(x, y)
linesegments(x, y, z)
Plots a line for each pair of points in (x, y, z)
, (x, y)
, or positions
.
Theme
Available attributes and their defaults for LineSegments{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linestyle "nothing"
linewidth 1.0
overdraw false
transparency false
visible true
AbstractPlotting.map_once
— Methodmap_once(closure, inputs::Node....)::Node
Like Reactive.foreach, in the sense that it will be preserved even if no reference is kept. The difference is, that you can call map once multiple times with the same closure and it will close the old result Node and register a new one instead.
``` function test(s1::Node) s3 = maponce(x-> (println("1 ", x); x), s1) s3 = maponce(x-> (println("2 ", x); x), s1)
end test(Node(1), Node(2))
AbstractPlotting.mesh!
— Methodmesh(x, y, z)
mesh(mesh_object)
mesh(x, y, z, faces)
mesh(xyz, faces)
Plots a 3D mesh.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.mesh!,T} where T
are:
AbstractPlotting.mesh
— Methodmesh(x, y, z)
mesh(mesh_object)
mesh(x, y, z, faces)
mesh(xyz, faces)
Plots a 3D mesh.
Theme
Available attributes and their defaults for Mesh{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
interpolate false
linewidth 1
overdraw false
shading true
transparency false
visible true
AbstractPlotting.meshscatter!
— Methodmeshscatter(positions)
meshscatter(x, y)
meshscatter(x, y, z)
Plots a mesh for each element in (x, y, z)
, (x, y)
, or positions
(similar to scatter
). markersize
is a scaling applied to the primitive passed as marker
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.meshscatter!,T} where T
are:
AbstractPlotting.meshscatter
— Methodmeshscatter(positions)
meshscatter(x, y)
meshscatter(x, y, z)
Plots a mesh for each element in (x, y, z)
, (x, y)
, or positions
(similar to scatter
). markersize
is a scaling applied to the primitive passed as marker
.
Theme
Available attributes and their defaults for MeshScatter{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linewidth 1
marker GeometryTypes.HyperSphere{3,Float32}(Float32[0.0, 0.0, 0.0], 1.0f0)
markersize 0.1
overdraw false
rotations 1.0 + 0.0im + 0.0jm + 0.0km
shading true
transparency false
visible true
AbstractPlotting.mouse_selection
— Methodmouse_selection(scene::Scene)
Returns the plot that is under the current mouse position
AbstractPlotting.mouseover
— Methodmouseover(scene::SceneLike, plots::AbstractPlot...)
Returns true if the mouse currently hovers any of plots
.
AbstractPlotting.mouseposition
— Functionmouseposition(scene = hovered_scene()) -> pos
Return the current position of the mouse pos
in data points of the given scene
.
By default uses the scene
that the mouse is currently hovering over.
AbstractPlotting.move!
— Methodmove!(slider::Slider, idx::Integer)
Moves the slider to the position of slider.range[idx].
AbstractPlotting.must_update
— MethodReturns whether a scene needs to be updated
AbstractPlotting.onpick
— Functiononpick(func, plot)
Calls func
if one clicks on plot
. Implemented by the backend.
AbstractPlotting.onpick
— Methodonpick(f, scene::SceneLike, plots::AbstractPlot...)
Calls f(idx)
whenever the mouse is over any of plots
. idx
is an index, e.g. when over a scatter plot, it will be the index of the hovered element
AbstractPlotting.pick
— FunctionPicks a mouse position. Implemented by the backend.
AbstractPlotting.pick
— Methodpick(scene::Scene, xy::VecLike)
Return the plot under pixel position xy
AbstractPlotting.pick
— MethodReturn the plot under pixel position x y
AbstractPlotting.plot!
— MethodMain plotting signatures that plot/plot! route to if no Plot Type is given
AbstractPlotting.poly!
— Method`poly(vertices, indices; kwargs...)`
`poly(points; kwargs...)`
`poly(shape; kwargs...)`
Plots a polygon based on the arguments given. When vertices and indices are given, it functions similarly to mesh
. When points are given, it draws one polygon that connects all the points in order. When a shape is given (essentially anything decomposable by GeometryTypes
), it will plot decompose(shape)
.
poly(coordinates, connectivity; kwargs...)
Plots polygons, which are defined by coordinates
(the coordinates of the vertices) and connectivity
(the edges between the vertices).
Theme
Available attributes and their defaults for Combined{AbstractPlotting.poly!,T} where T
are:
AbstractPlotting.poly
— Method`poly(vertices, indices; kwargs...)`
`poly(points; kwargs...)`
`poly(shape; kwargs...)`
Plots a polygon based on the arguments given. When vertices and indices are given, it functions similarly to mesh
. When points are given, it draws one polygon that connects all the points in order. When a shape is given (essentially anything decomposable by GeometryTypes
), it will plot decompose(shape)
.
poly(coordinates, connectivity; kwargs...)
Plots polygons, which are defined by coordinates
(the coordinates of the vertices) and connectivity
(the edges between the vertices).
Theme
Available attributes and their defaults for Poly{...}
are:
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linestyle "nothing"
overdraw false
shading false
strokecolor RGBA{Float32}(0.0f0,0.0f0,0.0f0,0.0f0)
strokewidth 0.0
transparency false
visible true
AbstractPlotting.record
— Methodrecord(func, scene, path, iter; framerate = 24)
This is simply a shorthand to wrap a for loop in record
.
Example:
scene = lines(rand(10))
record(scene, "test.gif", 1:100) do i
scene.plots[:color] = Colors.RGB(i/255, 0, 0) # animate scene
end
AbstractPlotting.record
— Methodrecord(func, scene, path; framerate = 24)
record(func, scene, path, iter; framerate = 24)
Records the Scene scene
after the application of func
on it for each element in itr
(any iterator). func
must accept an element of itr
.
The animation is then saved to path
, with the format determined by path
's extension. Allowable extensions are:
.mkv
(the default, doesn't need to convert).mp4
(good for Web, most supported format).webm
(smallest file size).gif
(largest file size for the same quality)
.mp4
and .mk4
are marginally bigger and .gif
s are up to 6 times bigger with the same quality!
Typical usage patterns would look like:
record(scene, "video.mp4", itr) do i
func(i) # or some other manipulation of the Scene
end
or, for more tweakability,
record(scene, "test.gif") do io
for i = 1:100
func!(scene) # animate scene
recordframe!(io) # record a new frame
end
end
If you want a more tweakable interface, consider using VideoStream
and save
.
Examples
scene = lines(rand(10))
record(scene, "test.gif") do io
for i in 1:255
scene.plots[:color] = Colors.RGB(i/255, (255 - i)/255, 0) # animate scene
recordframe!(io)
end
end
or
scene = lines(rand(10))
record(scene, "test.gif", 1:255) do i
scene.plots[:color] = Colors.RGB(i/255, (255 - i)/255, 0) # animate scene
end
AbstractPlotting.record_events
— Methodrecord_events(f, scene::Scene, path::String)
Records all window events that happen while executing function f
for scene
and serializes them to path
.
AbstractPlotting.recordframe!
— Methodrecordframe!(io::VideoStream)
Adds a video frame to the VideoStream io
.
AbstractPlotting.replace_automatic!
— MethodLike get!(f, dict, key)
but also calls f
and replaces key
when the corresponding value is nothing
AbstractPlotting.replay_events
— Methodreplay_events(f, scene::Scene, path::String)
replay_events(scene::Scene, path::String)
Replays the serialized events recorded with record_events
in path
in scene
.
AbstractPlotting.rotate!
— Methodrotate!(scene::Transformable, axis_rot::Quaternion)
rotate!(scene::Transformable, axis_rot::AbstractFloat)
rotate!(scene::Transformable, axis_rot...)
Apply an absolute rotation to the Scene. Rotations are all internally converted to Quaternion
s.
AbstractPlotting.rotate!
— Methodrotate!(Accum, scene::Transformable, axis_rot...)
Apply a relative rotation to the Scene, by multiplying by the current rotation.
AbstractPlotting.rotate_cam!
— Methodrotate_cam!(scene::Scene, theta_v::Number...)
rotate_cam!(scene::Scene, theta_v::VecTypes)
Rotate the camera of the Scene by the given rotation.
AbstractPlotting.scale!
— Methodscale!(t::Transformable, x, y)
scale!(t::Transformable, x, y, z)
scale!(t::Transformable, xyz)
scale!(t::Transformable, xyz...)
Scale the given Transformable
(a Scene or Plot) to the given arguments. Can take x, y
or x, y, z
. This is an absolute scaling, and there is no option to perform relative scaling.
AbstractPlotting.scatter!
— Methodscatter(positions)
scatter(x, y)
scatter(x, y, z)
Plots a marker for each element in (x, y, z)
, (x, y)
, or positions
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.scatter!,T} where T
are:
AbstractPlotting.scatter
— Methodscatter(positions)
scatter(x, y)
scatter(x, y, z)
Plots a marker for each element in (x, y, z)
, (x, y)
, or positions
.
Theme
Available attributes and their defaults for Scatter{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
distancefield "nothing"
glowcolor RGBA{N0f8}(0.0,0.0,0.0,0.0)
glowwidth 0.0
linewidth 1
marker GeometryTypes.HyperSphere{2,T} where T
marker_offset AbstractPlotting.Automatic()
markersize 0.1
overdraw false
rotations Billboard()
strokecolor RGBA{N0f8}(0.0,0.0,0.0,0.0)
strokewidth 0.0
transform_marker false
transparency false
uv_offset_width Float32[0.0, 0.0, 0.0, 0.0]
visible true
AbstractPlotting.scatterlines!
— Methodscatterlines(xs, ys, [zs]; kwargs...)
Plots lines
between sets of x and y coordinates provided, as well as plotting those points using scatter
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.scatterlines!,T} where T
are:
AbstractPlotting.scatterlines
— Methodscatterlines(xs, ys, [zs]; kwargs...)
Plots lines
between sets of x and y coordinates provided, as well as plotting those points using scatter
.
Theme
Available attributes and their defaults for ScatterLines{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
distancefield "nothing"
glowcolor RGBA{N0f8}(0.0,0.0,0.0,0.0)
glowwidth 0.0
linestyle "nothing"
linewidth 1
marker GeometryTypes.HyperSphere{2,T} where T
marker_offset AbstractPlotting.Automatic()
markersize 0.1
overdraw false
rotations Billboard()
strokecolor RGBA{N0f8}(0.0,0.0,0.0,0.0)
strokewidth 0.0
transform_marker false
transparency false
uv_offset_width Float32[0.0, 0.0, 0.0, 0.0]
visible true
AbstractPlotting.select_rectangle
— Methodselect_rectangle(scene; kwargs...) -> rect
Interactively select a rectangle on a scene
by clicking the left mouse button, dragging and then un-clicking. The function returns an observable rect
whose value corresponds to the selected rectangle on the scene. In addition the function plots the selected rectangle on the scene as the user clicks and moves the mouse around. When the button is not clicked any more, the plotted rectangle disappears.
The value of the returned observable is updated only when the user un-clicks (i.e. when the final value of the rectangle has been decided) and only if the rectangle has area > 0.
The kwargs...
are propagated into lines!
which plots the selected rectangle.
AbstractPlotting.series!
— MethodSeries - ?
TODO add function signatures TODO add description
Theme
Available attributes and their defaults for Combined{AbstractPlotting.series!,T} where T
are:
AbstractPlotting.series
— MethodSeries - ?
TODO add function signatures TODO add description
Theme
Available attributes and their defaults for Series{...}
are:
seriescolors :Set1
seriestype :lines
AbstractPlotting.showgradients
— Methodshowgradients(
cgrads::AbstractVector{Symbol};
h = 0.0, offset = 0.2, textsize = 0.7,
resolution = (800, length(cgrads) * 84)
)::Scene
Plots the given colour gradients arranged as horizontal colourbars. If you change the offsets or the font size, you may need to change the resolution.
AbstractPlotting.showlibrary
— Methodshowlibrary(lib::Symbol)::Scene
Shows all colour gradients in the given library. Returns a Scene with these colour gradients arranged as horizontal colourbars.
AbstractPlotting.slider!
— Methodslider(range; kwargs...)
Creates a slider which slides through the selected range; sliders are discrete. The Slider's value can be accessed through its value
field. For example:
scene = slider(1:10)
lift(scene[end].value) do val
# your function here
end
Theme
Available attributes and their defaults for Combined{AbstractPlotting.slider!,T} where T
are:
AbstractPlotting.slider
— Methodslider(range; kwargs...)
Creates a slider which slides through the selected range; sliders are discrete. The Slider's value can be accessed through its value
field. For example:
scene = slider(1:10)
lift(scene[end].value) do val
# your function here
end
Theme
Available attributes and their defaults for Slider{...}
are:
backgroundcolor (:gray, 0.01)
buttoncolor :white
buttonsize 15
buttonstroke 1.5
buttonstrokecolor :black
camera AbstractPlotting.campixel!
position (0, 0)
raw true
slidercolor (:gray, 0.6)
sliderheight 50
sliderlength 200
start AbstractPlotting.Automatic()
strokecolor (:black, 0.4)
strokewidth 1
textcolor :black
textsize 15
value 0
valueprinter AbstractPlotting.default_printer
AbstractPlotting.spy!
— Methodspy(x::Range, y::Range, z::AbstractSparseArray)
Visualizes big sparse matrices. Usage:
N = 200_000
x = sprand(Float64, N, N, (3(10^6)) / (N*N));
spy(x)
# or if you want to specify the range of x and y:
spy(0..1, 0..1, x)
Theme
Available attributes and their defaults for Combined{AbstractPlotting.spy!,T} where T
are:
AbstractPlotting.spy
— Methodspy(x::Range, y::Range, z::AbstractSparseArray)
Visualizes big sparse matrices. Usage:
N = 200_000
x = sprand(Float64, N, N, (3(10^6)) / (N*N));
spy(x)
# or if you want to specify the range of x and y:
spy(0..1, 0..1, x)
Theme
Available attributes and their defaults for Spy{...}
are:
colormap :viridis
colorrange AbstractPlotting.Automatic()
framecolor :black
framesize 1
marker AbstractPlotting.Automatic()
markersize AbstractPlotting.Automatic()
AbstractPlotting.step!
— Methodstep!(s::Stepper)
steps through a Makie.Stepper
and outputs a file with filename filename-step.jpg
. This is useful for generating progressive plot examples.
AbstractPlotting.streamlines!
— MethodStreamLines
TODO add function signatures TODO add descripton
Theme
Available attributes and their defaults for Combined{AbstractPlotting.streamlines!,T} where T
are:
AbstractPlotting.streamlines
— MethodStreamLines
TODO add function signatures TODO add descripton
Theme
Available attributes and their defaults for StreamLines{...}
are:
color :black
h 0.01f0
linewidth 1
n 5
AbstractPlotting.streamplot!
— Methodstreamplot(f::function, xinterval, yinterval;
kwargs...)
f must either accept f(::Point)
or f(x::Number, y::Number)
. f must return a Point2.
Example:
using Makie
v(x::Point2{T}) = Point2f0(x[2], 4*x[1])
streamplot(v, -2..2, -2..2)
Theme
Available attributes and their defaults for Combined{AbstractPlotting.streamplot!,T} where T
are:
Implementation
See the function streamplot_impl
for implementation details.
AbstractPlotting.streamplot
— Methodstreamplot(f::function, xinterval, yinterval;
kwargs...)
f must either accept f(::Point)
or f(x::Number, y::Number)
. f must return a Point2.
Example:
using Makie
v(x::Point2{T}) = Point2f0(x[2], 4*x[1])
streamplot(v, -2..2, -2..2)
Theme
Available attributes and their defaults for StreamPlot{...}
are:
alpha 1.0
arrow_size 0.03
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
density 1.0
gridsize (32, 32, 32)
linestyle "nothing"
linewidth 1.0
maxsteps 500
overdraw false
stepsize 0.01
transparency false
visible true
Implementation
See the function streamplot_impl
for implementation details.
AbstractPlotting.surface!
— Methodsurface(x, y, z)
Plots a surface, where (x, y)
define a grid whose heights are the entries in z
.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.surface!,T} where T
are:
AbstractPlotting.surface
— Methodsurface(x, y, z)
Plots a surface, where (x, y)
define a grid whose heights are the entries in z
.
Theme
Available attributes and their defaults for Surface{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linewidth 1
overdraw false
shading true
transparency false
visible true
AbstractPlotting.text!
— Methodtext(string)
Plots a text.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.text!,T} where T
are:
AbstractPlotting.text
— Methodtext(string)
Plots a text.
Theme
Available attributes and their defaults for Text{...}
are:
align (:left, :bottom)
alpha 1.0
color :black
font "Dejavu Sans"
linewidth 1
overdraw false
position Float32[0.0, 0.0]
rotation 0.0
strokecolor (:black, 0.0)
strokewidth 0
textsize 20
transparency false
visible true
AbstractPlotting.timeseries!
— Methodtimeseries(x::Node{{Union{Number, Point2}}})
Plots a sampled signal. Usage:
signal = Node(1.0)
scene = timeseries(signal)
display(scene)
# @async is optional, but helps to continue evaluating more code
@async while isopen(scene)
# aquire data from e.g. a sensor:
data = rand()
# update the signal
signal[] = data
# sleep/ wait for new data/ whatever...
# It's important to yield here though, otherwise nothing will be rendered
sleep(1/30)
end
AbstractPlotting.timeseries
— Methodtimeseries(x::Node{{Union{Number, Point2}}})
Plots a sampled signal. Usage:
signal = Node(1.0)
scene = timeseries(signal)
display(scene)
# @async is optional, but helps to continue evaluating more code
@async while isopen(scene)
# aquire data from e.g. a sensor:
data = rand()
# update the signal
signal[] = data
# sleep/ wait for new data/ whatever...
# It's important to yield here though, otherwise nothing will be rendered
sleep(1/30)
end
AbstractPlotting.title
— Methodtitle(
[scene=current_scene(), ], string;
align = (:center, :bottom), textsize = 30, parent = Scene(), kw...
)
Add a title with content string
to scene
.
AbstractPlotting.to_color
— Methodto_color(color)
Converts a color
symbol (e.g. :blue
) to a color RGBA.
AbstractPlotting.to_colormap
— Methodto_colormap(cm[, N = 20])
Converts a colormap cm
symbol (e.g. :Spectral
) to a colormap RGB array, where N
specifies the number of color points.
AbstractPlotting.translate!
— Methodtranslate!(scene::Transformable, xyz::VecTypes)
translate!(scene::Transformable, xyz...)
Apply an absolute translation to the Scene, translating it to x, y, z
.
AbstractPlotting.translate!
— Methodtranslate!(Accum, scene::Transformable, xyz...)
Translate the scene relative to its current position.
AbstractPlotting.translate_cam!
— Methodtranslate_cam!(scene::Scene. translation::VecTypes)
Translate the camera to the given coordinates.
AbstractPlotting.update!
— Method`update!(p::Scene)`
Updates a Scene
and all its children. Update will perform the following operations for every scene:
if !scene.raw[]
scene.update_limits[] && update_limits!(scene)
scene.scale_plot[] && scale_scene!(scene)
scene.center[] && center!(scene)
end
AbstractPlotting.update_cam!
— Functionupdate_cam!(scene::Scene, eyeposition, lookat, up = Vec3f0(0, 0, 1))
Updates the camera's controls to point to the specified location.
AbstractPlotting.update_cam!
— Method`update_cam!(scene::SceneLike, area)`
Updates the camera for the given scene
to cover the given area
in 2d.
AbstractPlotting.update_cam!
— Method`update_cam!(scene::SceneLike)`
Updates the camera for the given scene
to cover the limits of the Scene
. Useful when using the Node
pipeline.
AbstractPlotting.update_limits!
— Functionupdate_limits!(scene::Scene, new_limits::HyperRectangle, padding = Vec3f0(0))
This function updates the limits of the given Scene
according to the given HyperRectangle.
A HyperRectangle
is a generalization of a rectangle to n dimensions. It contains two vectors. The first vector defines the origin; the second defines the displacement of the vertices from the origin. This second vector can be thought of in two dimensions as a vector of width (x-axis) and height (y-axis), and in three dimensions as a vector of the width (x-axis), breadth (y-axis), and height (z-axis).
Such a HyperRectangle
can be constructed using the FRect
or FRect3D
functions that are exported by AbstractPlotting.jl
. See their documentation for more information.
AbstractPlotting.update_limits!
— Methodupdate_limits!(scene::Scene, limits::Union{Automatic, Rect} = scene.limits[], padding = scene.padding[])
This function updates the limits of the Scene
passed to it based on its data. If an actual limit is set by the theme or its attributes (scene.limits !== automatic), it will not update the limits. Call update_limits!(scene, automatic) for that.
AbstractPlotting.vbox
— Methodvbox(scenes...; parent = Scene(clear = false), kwargs...)
Box the scenes together on the vertical axis. For example, two Scenes vbox
ed will be placed side-by-side.
– Scene 1 – – Scene 2 –
AbstractPlotting.volume!
— Methodvolume(volume_data)
Plots a volume. Available algorithms are:
:iso
=> IsoValue:absorption
=> Absorption:mip
=> MaximumIntensityProjection:absorptionrgba
=> AbsorptionRGBA:indexedabsorption
=> IndexedAbsorptionRGBA
Theme
Available attributes and their defaults for Combined{AbstractPlotting.volume!,T} where T
are:
AbstractPlotting.volume
— Methodvolume(volume_data)
Plots a volume. Available algorithms are:
:iso
=> IsoValue:absorption
=> Absorption:mip
=> MaximumIntensityProjection:absorptionrgba
=> AbsorptionRGBA:indexedabsorption
=> IndexedAbsorptionRGBA
Theme
Available attributes and their defaults for Volume{...}
are:
absorption 1.0f0
algorithm :iso
alpha 1.0
color "nothing"
colormap :viridis
colorrange (0, 1)
isorange 0.05f0
isovalue 0.5f0
linewidth 1
overdraw false
transparency false
visible true
AbstractPlotting.volumeslices!
— MethodVolumeSlices
TODO add function signatures TODO add descripton
Theme
Available attributes and their defaults for Combined{AbstractPlotting.volumeslices!,T} where T
are:
AbstractPlotting.volumeslices
— MethodVolumeSlices
TODO add function signatures TODO add descripton
Theme
Available attributes and their defaults for VolumeSlices{...}
are:
alpha 0.1
colormap :viridis
colorrange "nothing"
contour Dict{Any,Any} with 0 entries
heatmap Dict{Any,Any} with 0 entries
AbstractPlotting.wireframe!
— Method`wireframe(x, y, z)`, `wireframe(positions)`, or `wireframe(mesh)`
Draws a wireframe, either interpreted as a surface or as a mesh.
Theme
Available attributes and their defaults for Combined{AbstractPlotting.wireframe!,T} where T
are:
AbstractPlotting.wireframe
— Method`wireframe(x, y, z)`, `wireframe(positions)`, or `wireframe(mesh)`
Draws a wireframe, either interpreted as a surface or as a mesh.
Theme
Available attributes and their defaults for Wireframe{...}
are:
alpha 1.0
color :black
colormap :viridis
colorrange AbstractPlotting.Automatic()
linestyle "nothing"
linewidth 1.0
overdraw false
transparency false
visible true
AbstractPlotting.xlabel!
— Methodxlabel!([scene,] xlabel)
Set the x-axis label for the given Scene. Defaults to using the current Scene.
AbstractPlotting.xlims!
— Methodxlims!(limits::Real...)
xlims!(limits::NTuple{2, Real})
xlims!(scene, limits::Real...)
xlims!(scene, limits::NTuple{2, Real})
Set the x-limits for the given Scene (defaults to current Scene).
AbstractPlotting.ylabel!
— Methodylabel!([scene,] ylabel)
Set the y-axis label for the given Scene. Defaults to using the current Scene.
AbstractPlotting.ylims!
— Methodylims!(limits::Real...)
ylims!(limits::NTuple{2, Real})
ylims!(scene, limits::Real...)
ylims!(scene, limits::NTuple{2, Real})
Set the y-limits for the given Scene (defaults to current Scene).
AbstractPlotting.zlabel!
— Methodzlabel!([scene,] zlabel)
Set the z-axis label for the given Scene. Defaults to using the current Scene.
The Scene must have an Axis3D. If not, then this function will error.
AbstractPlotting.zlims!
— Methodzlims!(limits::Real...)
zlims!(limits::NTuple{2, Real})
zlims!(scene, limits::Real...)
zlims!(scene, limits::NTuple{2, Real})
Set the z-limits for the given Scene (defaults to current Scene).
AbstractPlotting.zoom!
— Methodzoom!(scene, point, zoom_step)
Zooms the camera of scene
in towards point
by a factor of zoom_step
.
FileIO.save
— Methodsave(path::String, io::VideoStream; framerate = 24)
Flushes the video stream and converts the file to the extension found in path
, which can be one of the following:
.mkv
(the default, doesn't need to convert).mp4
(good for Web, most supported format).webm
(smallest file size).gif
(largest file size for the same quality)
.mp4
and .mk4
are marginally bigger and .gif
s are up to 6 times bigger with the same quality!
See the docs of VideoStream
for how to create a VideoStream. If you want a simpler interface, consider using record
.
FileIO.save
— MethodFileIO.save(filename, scene; resolution = size(scene))
Saves a Scene
to file! Allowable formats depend on the backend;
GLMakie
allows.png
,.jpeg
, and.bmp
.CairoMakie
allows.svg
,pdf
, and.jpeg
.WGLMakie
allows.png
.
Resolution can be specified, via save("path", scene, resolution = (1000, 1000))
!
Observables.on
— Methodon(f, c::Camera, nodes::Node...)
When mapping over nodes for the camera, we store them in the steering_node
vector, to make it easier to disconnect the camera steering signals later!
AbstractPlotting.@extract
— Macrousage @exctract scene (a, b, c, d)
AbstractPlotting.@extractvalue
— Macrousage @extractvalue scene (a, b, c, d) will become:
begin
a = to_value(scene[:a])
b = to_value(scene[:b])
c = to_value(scene[:c])
(a, b, c)
end
AbstractPlotting.@get_attribute
— Macro@get_attribute scene (a, b, c, d)
This will extract attribute a
, b
, c
, d
from scene
and apply the correct attribute conversions + will extract the value if it's a signal. It will make those attributes available as variables and return them as a tuple. So the above is equal to: will become:
begin
a = get_attribute(scene, :a)
b = get_attribute(scene, :b)
c = get_attribute(scene, :c)
(a, b, c)
end
AbstractPlotting.@recipe
— MacroPlot Recipes in AbstractPlotting
There's two types of recipes. Type recipes define a simple mapping from a user defined type to an existing plot type. Full recipes can customize the theme and define a custom plotting function.
Type recipes
Type recipe are really simple and just overload the argument conversion pipeline. This can be done for all plot types or for a subset of plot types:
# All plot types
convert_arguments(P::Type{<:AbstractPlot}, x::MyType) = convert_arguments(P, rand(10, 10))
# Only for scatter plots
convert_arguments(P::Type{<:Scatter}, x::MyType) = convert_arguments(P, rand(10, 10))
Optionally you may define the default plot type so that plot(x::MyType)
will use this:
plottype(::MyType) = Surface
Full recipes with the @recipe
macro
A full recipe for MyPlot
comes in two parts. First is the plot type name, arguments and theme definition which are defined using the @recipe
macro. Second is a custom plot!
for MyPlot
, implemented in terms of the atomic plotting functions.
We use an example to show how this works:
# arguments (x, y, z) && theme are optional
@recipe(MyPlot, x, y, z) do scene
Theme(
plot_color => :red
)
end
This macro expands to several things. Firstly a type definition:
const MyPlot{ArgTypes} = Combined{myplot, ArgTypes}
The type parameter of Combined
contains the function instead of e.g. a symbol. This way the mapping from MyPlot
to myplot
is safer and simpler. (The downside is we always need a function myplot
- TODO: is this a problem?)
The following signatures are defined to make MyPlot
nice to use:
myplot(args...; kw_args...) = ...
myplot!(scene, args...; kw_args...) = ...
myplot(kw_args::Dict, args...) = ...
myplot!(scene, kw_args::Dict, args...) = ...
#etc (not 100% settled what signatures there will be)
A specialization of argument_names
is emitted if you have an argument list (x,y,z)
provided to the recipe macro:
argument_names(::Type{<: MyPlot}) = (:x, :y, :z)
This is optional but it will allow the use of plot_object[:x]
to fetch the first argument from the call plot_object = myplot(rand(10), rand(10), rand(10))
, for example. Alternatively you can always fetch the i
th argument using plot_object[i]
, and if you leave out the (x,y,z)
, the default version of argument_names
will provide plot_object[:arg1]
etc.
The theme given in the body of the @recipe
invocation is inserted into a specialization of default_theme
which inserts the theme into any scene that plots MyPlot
:
function default_theme(scene, ::MyPlot)
Theme(
plot_color => :red
)
end
As the second part of defining MyPlot
, you should implement the actual plotting of the MyPlot
object by specializing plot!
:
function plot!(plot::MyPlot)
# normal plotting code, building on any previously defined recipes
# or atomic plotting operations, and adding to the combined `plot`:
lines!(plot, rand(10), color = plot[:plot_color])
plot!(plot, plot[:x], plot[:y])
plot
end
It's possible to add specializations here, depending on the argument types supplied to myplot
. For example, to specialize the behavior of myplot(a)
when a
is a 3D array of floating point numbers:
const MyVolume = MyPlot{Tuple{<:AbstractArray{<: AbstractFloat, 3}}}
argument_names(::Type{<: MyVolume}) = (:volume,) # again, optional
function plot!(plot::MyVolume)
# plot a volume with a colormap going from fully transparent to plot_color
volume!(plot, plot[:volume], colormap = :transparent => plot[:plot_color])
plot
end
The docstring given to the recipe will be transferred to the functions it generates.
What isn't
AbstractPlotting.automatic
— ConstantSingleton instance to indicate that an attribute will get calculated automatically
AbstractPlotting.available_backends
— ConstantCurrently available displays by backend
AbstractPlotting.Automatic
— TypeType to indicate that an attribute will get calculated automatically
AbstractPlotting.ColorSampler
— TypeA colorsampler maps numnber values from a certain range to values of a colormap
x = ColorSampler(colormap, (0.0, 1.0))
x[0.5] # returns color at half point of colormap
AbstractPlotting.Transformable
— Typeabstract type Transformable
This is a bit of a weird name, but all scenes and plots are transformable, so that's what they all have in common. This might be better expressed as traits.
AbstractPlotting.Plot
— MethodReturns the Combined type that represents the signature of args
.
AbstractPlotting.apply_convert!
— Methodapply for return type (args...,)
AbstractPlotting.apply_convert!
— Methodapply for return type PlotSpec
AbstractPlotting.argument_names
— MethodEach argument can be named for a certain plot type P
. Falls back to arg1
, arg2
, etc.
AbstractPlotting.atomic_limits
— MethodData limits calculate a minimal boundingbox from the data points in a plot. This doesn't include any transformations, markers etc.
AbstractPlotting.available_gradients
— Methodavailable_gradients()
Prints all available gradient names.
AbstractPlotting.available_marker_symbols
— Methodavailable_marker_symbols()
Displays all available marker symbols.
AbstractPlotting.calculated_attributes!
— Method`calculated_attributes!(trait::Type{<: AbstractPlot}, plot)`
trait version of calculated_attributes
AbstractPlotting.calculated_attributes!
— Method`calculated_attributes!(plot::AbstractPlot)`
Fill in values that can only be calculated when we have all other attributes filled
AbstractPlotting.cam3d_turntable!
— Methodcam3d_turntable!(scene; kw_args...)
Creates a 3D camera for scene
, which rotates around the plot's axis.
AbstractPlotting.close2square
— MethodReturns (N1, N2) with N1 x N2 == n
. N2 might become 1
AbstractPlotting.colorswatch
— Functioncolorswatch(scene = Scene(camera = campixel!))
TODO add function signatures TODO add description
Theme
Available attributes and their defaults for Combined{AbstractPlotting.colorswatch,T} where T
are:
AbstractPlotting.current_scene
— MethodReturns the current active scene (the last scene that got created)
AbstractPlotting.default_plot_signatures
— Method default_plot_signatures(funcname, funcname!, PlotType)
Creates all the different overloads for funcname
that need to be supported for the plotting frontend! Since we add all these signatures to different functions, we make it reusable with this function. The Core.@__doc__
macro transfers the docstring given to the Recipe into the functions.
AbstractPlotting.default_printer
— Methoddefault_printer(v)
Prints v rounded to three digits. Here, v
can be of any type accepted by round
, which includes Real, Complex and many others. To use your own custom datatype it is sufficient to define Base.round(x::NewType, r::RoundingMode).
AbstractPlotting.detach!
— MethodRemove combined
from the current parent, and add it to a new subscene of the parent scene. Returns the new parent.
AbstractPlotting.dont_touch
— Methoddont_touch(
parent::GeometryPrimitive{N}, child::GeometryPrimitive{N},
pad::Vec{N}
) where N
Moves child
so that it doesn't touch parent. Leaves a gap to parent defined by pad
.
AbstractPlotting.elconvert
— MethodConverts the elemen array type to T1
without making a copy if the element type matches
AbstractPlotting.extract_scene_attributes!
— Methodextract_scene_attributes!(attributes)
removes all scene attributes from attributes
and returns them in a new Attribute dict.
AbstractPlotting.fit_factor
— Methodfit_factor(rect, lims::NTuple{N}) where N
Calculates the scaling one needs to apply to lims to fit rect
without changing aspect ratio. Returns float scaling and the full strech as given by fit_factor_stretch
AbstractPlotting.fit_factor_stretch
— Methodfit_factor_stretch(rect, lims::NTuple{N}) where N
Calculates the stretch factor to fill rect
in all dimension. Returns a stretch N
dimensional fit factor.
AbstractPlotting.fit_ratio
— Methodfit_ratio(rect, lims)
Calculates the ratio one needs to stretch lims
in order to get the same aspect ratio
AbstractPlotting.flatten_combined
— FunctionFlattens all the combined plots and returns a Vector of Atomic plots
AbstractPlotting.from_dict
— Methodfrom_dict(::Type{T}, dict)
Creates the type T
from the fields in dict. Automatically converts to the correct node types.
AbstractPlotting.frustum
— MethodCreate view frustum
Parameters
----------
left : float
Left coordinate of the field of view.
right : float
Left coordinate of the field of view.
bottom : float
Bottom coordinate of the field of view.
top : float
Top coordinate of the field of view.
znear : float
Near coordinate of the field of view.
zfar : float
Far coordinate of the field of view.
Returns
-------
M : array
View frustum matrix (4x4).
AbstractPlotting.getscreen
— Methodgetscreen(scene::Scene)
Gets the current screen a scene is associated with. Returns nothing if not yet displayed on a screen.
AbstractPlotting.interpolated_getindex
— Methodinterpolated_getindex(cmap::AbstractArray, value::AbstractFloat, norm = (0.0, 1.0))
Like getindex, but accepts values between 0..1 and interpolates those to the full range. You can use norm
, to change the range of 0..1 to whatever you want.
AbstractPlotting.lookat
— Methodview = lookat(eyeposition, lookat, up)
creates a view matrix with the eye located at eyeposition
and looking at position lookat
, with the top of the window corresponding to the direction up
. Only the component of up
that is perpendicular to the vector pointing from eyeposition
to lookat
will be used. All inputs must be supplied as 3-vectors.
AbstractPlotting.mouse_in_scene
— Methodmouse_in_scene(scene::Scene)
returns the mouseposition relative to scene
AbstractPlotting.move_from_touch
— Methodmove_from_touch(
parent::GeometryPrimitive{N, T}, child::GeometryPrimitive{N},
pad::Vec{N}
) where {N, T}
calculates how much child
rectangle needs to move to not touch the parent
AbstractPlotting.notify!
— MethodPushes an updates to all listeners of node
AbstractPlotting.perspectiveprojection
— Methodproj = perspectiveprojection([T], fovy, aspect, znear, zfar)
defines a projection matrix with a given angular field-of-view fovy
along the y-axis (measured in degrees), the specified aspect
ratio, and near and far clipping planes znear
, zfar
. Optionally specify the element type T
of the matrix.
AbstractPlotting.perspectiveprojection
— Methodproj = perspectiveprojection([T], rect, fov, near, far)
defines the projection ratio in terms of the rectangular view size rect
rather than the aspect ratio.
AbstractPlotting.plots_from_camera
— MethodFetches all plots sharing the same camera
AbstractPlotting.plottype
— Method`plot_type(plot_args...)`
The default plot type for any argument is lines
. Any custom argument combination that has only one meaningful way to be plotted should overload this. e.g.:
# make plot(rand(5, 5, 5)) plot as a volume
plottype(x::Array{<: AbstractFlot, 3}) = Volume
AbstractPlotting.plottype
— Methodplottype(P1::Type{<: Combined{T1}}, P2::Type{<: Combined{T2}})
Chooses the more concrete plot type ```example function convert_arguments(P::PlotFunc, args...) ptype = plottype(P, Lines) ... end
AbstractPlotting.primary_resolution
— MethodReturns the resolution of the primary monitor. If the primary monitor can't be accessed, returns (1920, 1080) (full hd)
AbstractPlotting.print_rec
— Functionprint_rec(io::IO, dict, indent::Int = 1[; extended = false])
Traverses a dictionary dict
and recursively print out its keys and values in a nicely-indented format.
Use the optional extended = true
keyword argument to see more details.
AbstractPlotting.raw_boundingbox
— MethodCalculates the exact boundingbox of a Scene/Plot, without considering any transformation
AbstractPlotting.reasonable_resolution
— MethodReturns a reasonable resolution for the main monitor. (right now just half the resolution of the main monitor)
AbstractPlotting.resample
— Methodresample(A::AbstractVector, len::Integer)
Resample a vector with linear interpolation to have length len
AbstractPlotting.resampled_colors
— Methodresampled_colors(attributes::Attributes, levels::Integer)
Resample the color attribute from attributes
. Resamples :colormap
if present, or repeats :color
.
AbstractPlotting.safe_off
— MethodObservables.off but without throwing an error
AbstractPlotting.screen_relative
— MethodNormalizes mouse position relative to the screen rectangle
AbstractPlotting.sig_printer
— Methodsig_printer(v::Real)
Prints the first three significant digits of v
in scientific notation.
julia> -5:5 .|> exp .|> sig_printer
11-element Array{String,1}:
"6.74e-03"
"1.83e-02"
"4.98e-02"
"1.35e-01"
"3.68e-01"
"1.00e+00"
"2.72e+00"
"7.39e+00"
"2.01e+01"
"5.46e+01"
"1.48e+02"
AbstractPlotting.streamplot_impl
— Methodstreamplot_impl(CallType, f, limits::Rect{N, T}, resolutionND, stepsize)
Code adapted from an example implementation by Moritz Schauer (@mschauer) from https://github.com/JuliaPlots/Makie.jl/issues/355#issuecomment-504449775
Background: The algorithm puts an arrow somewhere and extends the streamline in both directions from there. Then, it chooses a new position (from the remaining ones), repeating the the exercise until the streamline gets blocked, from which on a new starting point, the process repeats.
So, ideally, the new starting points for streamlines are not too close to current streamlines.
Links:
AbstractPlotting.to_func
— Methodto_func(Typ)
Maps the input of a Type name to its cooresponding function.
AbstractPlotting.to_spritemarker
— MethodAny AbstractMatrix{<: Colorant} or other image type
AbstractPlotting.to_spritemarker
— MethodVector of anything that is accepted as a single marker will give each point it's own marker. Note that it needs to be a uniform vector with the same element type!
AbstractPlotting.to_spritemarker
— MethodMatrix of AbstractFloat will be interpreted as a distancefield (negative numbers outside shape, positive inside)
AbstractPlotting.to_spritemarker
— Methodto_spritemarker(b, marker::Char)
Any Char
, including unicode
AbstractPlotting.to_spritemarker
— Methodto_spritemarker(b, x::Circle)
GeometryTypes.Circle(Point2(...), radius)
AbstractPlotting.to_spritemarker
— MethodA Symbol
- Available options can be printed with available_marker_symbols()
AbstractPlotting.to_spritemarker
— Methodto_spritemarker(b, ::Type{Circle})
Type{GeometryTypes.Circle}
AbstractPlotting.to_spritemarker
— Methodto_spritemarker(b, ::Type{Rectangle})
Type{GeometryTypes.Rectangle}
AbstractPlotting.to_string
— Methodto_string(func)
Turns the input of a function name or plot Type into a string.
AbstractPlotting.to_type
— Methodto_type(func)
Maps the input of a function name to its cooresponding Type.
AbstractPlotting.used_attributes
— Methodused_attributes(args...) = ()
function used to indicate what keyword args one wants to get passed in convert_arguments
. Usage:
struct MyType end
used_attributes(::MyType) = (:attribute,)
function convert_arguments(x::MyType; attribute = 1)
...
end
# attribute will get passed to convert_arguments
# without keyword_verload, this wouldn't happen
plot(MyType, attribute = 2)
#You can also use the convenience macro, to overload convert_arguments in one step:
@keywords convert_arguments(x::MyType; attribute = 1)
...
end